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Abstract
The classification of a molecule’s spatial symmetry is an essential initial step in
predicting its vibrational spectra. When a (chemical) substitution is made, the
relationship between the spatial symmetries of the molecule and its derivatives
governs the differences between their corresponding vibrational spectra. These
text-book statements of molecular spectroscopy have also found recent and
successful applications with much larger molecules, namely single-walled
nanotubes. The purpose of this work is to review the profound interplay between
the spatial symmetry and the numbers of Raman- and infrared-active vibrations
in single-walled carbon and boron nitride nanotubes.

1. Introduction

Since their discovery by Iijima at the beginning of the 1990s [1], carbon nanotubes (CNTs)
have attracted enormous attention from both experimentalists and theoreticians for their novel
properties and potential applications (see, for example, [2, 3] and references therein). A
CNT is a synthesized allotropic form of carbon (see, for example, [4] for a review of their
physical properties). Single-walled CNTs (hereafter called CNTs), to which we will restrict
our attention, can be viewed as cylinders made of graphite sheets (graphene). The infinite-
order, two-dimensional (2D) translational symmetries of the hexagonal net (for which the plane
group is p6mm) can transform into various finite-order symmetries once the graphene plane is
transformed (rolled) into a CNT cylinder. The order and character of the resulting symmetries
depend on the way the graphene boundaries are connected to each other to form the cylinder.

Figure 1 illustrates the classification according to the pair of indices (n, m), representing
different CNTs. The (n, m) CNT is formed by rolling the graphene sheet along the chiral
vector

Ch = na1 + ma2 (1)

(where a1 and a2 are the two primitive vectors of the honeycomb lattice), such that its origin
O and its end-point O ′ coincide on the CNT. If the graphene sheet is rolled along the na1

direction, then an achiral zigzag CNT—classified by the pair of indices (n, 0)—is formed.
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Figure 1. The classification of CNTs according to the pair of indices (n, m). a1 and a2 are the two
primitive vectors of the honeycomb lattice. The chiral vectors Ch = OO′ are shown for zigzag,
chiral and armchair CNTs.

If the graphene sheet is rolled along the n(a1 + a2) direction, then an achiral armchair CNT—
classified by the pair of indices (n, n)—is formed. In all other cases, i.e. whenever 0 < m < n,
a chiral CNT is formed.

The primitive translation vector of the CNT unit cell, Tz , is given by

Tz = 1

dR
[(2m + n)a1 − (2n + m)a2], (2)

where dR is the greatest common divisor of 2n + m and 2m + n [4]. From the size of the unit
cell, which is defined by the orthogonal vectors Tz and Ch, we can readily find the number of
hexagons per unit cell:

N = 2(m2 + mn + n2)

dR
. (3)

Note that each hexagon contains two carbon atoms.
A boron nitride nanotube (BNT) is a recently synthesized [5, 6] novel type of material

that combines stable insulating properties [7, 8] and high strength [9]. Owing to the subset
relation between the plane groups of 2D hexagonal boron nitride and graphite nets,

p3m1 ⊆ p6mm, (4)
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single-walled BNTs (hereafter called BNTs) are characterized, as for CNTs, by the pair of
indices n and m: i.e. armchair (n, m = n); zigzag (n, m = 0); and chiral (n, 0 < m < n).
Thus, the (n, m) BNT and CNT possess the same lattice period Tz and number N of hexagons
within their unit cells. Ab initio studies of the spatial structure of BNTs have predicted the
buckling of B–N bonds, i.e. the formation of a concentric inner ‘B-cylinder’ and outer ‘N-
cylinder’ [8, 10].

2. Active phonons in single-walled carbon nanotubes

The classification of CNT symmetries is an essential stage in predicting their physical
properties, among which are active infrared (IR) and Raman vibrations (see, for example, [4]
and references therein).

In early CNT research, the determination of optically active phonon modes in achiral CNTs
was performed with symmorphic rod groups (see [4] and references therein). To account for
the inversion symmetry operation, unit cells possessing the point groups Dnh or Dnd for even
or odd ns, respectively, were chosen for the (n, 0) zigzag and (n, n) armchair CNTs. This led
to the prediction of 15–16 Raman-active phonon modes for infinitely long armchair CNTs [4],
with frequencies of up to about 1600 cm−1 (see [11] for a recent calculation of the frequencies
of vibrationally active modes in achiral CNTs). On the basis of calculations of Raman line
intensities, however, only seven of the above-predicted modes were found to be intense (in the
low- and high-frequency zones). The rest (in the intermediate-frequency zone) were found
to have no intensity for infinite nanotubes [12], but some intensity for finite nanotubes [13].
These latter predictions, based on Raman line intensities, have found clear fingerprints in
Raman scattering experiments from CNT ropes (see, for example, [14, 15]).

Following Damnjanović et al [16, 17], one learned in 1999 that achiral CNTs also possess
a screw axis of the order of 2n and n glide planes. Due to these operations, the symmetry
of achiral CNTs is described by non-symmorphic rod groups. This higher symmetry has
been shown to have a dramatic effect on the vibrational spectra of achiral CNTs [18]. In
particular, armchair CNTs have been shown to possess only eight Raman-active vibrations,
which corroborated the experimental data (see, for example, [14, 15]).

The determination of the numbers of Raman- and IR-active vibrations in chiral CNTs
in the ‘early’ days of CNT studies was performed with commutative non-symmorphic rod
groups (see [4] and references therein). The point group of the rod group of the (n, m) chiral
CNT was taken to be CN , where N is given by equation (3). In 1999, Damnjanović et al
[16, 17] showed that chiral CNTs also possess perpendicular C2 axes. The existence of these
previously ‘overlooked’ symmetry operations constituted geometrical proof that chiral CNTs
possess the spatial symmetry of non-commutative non-symmorphic rod groups [16, 17]. In
turn, this higher symmetry led to the conclusion of there being fewer active vibrations [18].

2.1. Achiral carbon nanotubes

Consider the achiral CNTs that possess the rotation axis of order n, i.e. the (n, 0) zigzag or
(n, n) armchair CNTs. The non-symmorphic rod group [16, 17] describing the achiral CNTs
with index n can be decomposed in the following manner (the 13th family of rod groups [19]):

G[n] = LTz × Dnh × [E ⊕ S2n] = LTz × Dnd × [E ⊕ S2n]

= LTz × [Dnh|z=0 ⊕ (Dnd|z=Tz/4 � Cnv) ⊕ Cnv × S2n], (5)

where the reference point z = 0 denotes the crossing of horizontal, σh, and vertical, σv,
reflection planes (see figure 2), LTz is the 1D translation group with the primitive translation
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Figure 2. The 2D projection of various symmetries in achiral CNTs (armchair segment—top;
zigzag segment—bottom): Tz is the primitive translation; S2n is the screw axis with non-primitive
translation and rotation, denoted by Tz/2 and Cn/2, respectively; g is a glide plane; Dnh |z=0 and
Dnd |z=Tz/4 are the corresponding point-group operations, among which σh, σv and Cn are denoted.
Note the Tz/4 shift between Dnh |z=0 and Dnd|z=Tz/4, which coexist in all achiral CNTs.

Tz = |Tz| and E is the identity operation. The screw axis S2n = (z → z + Tz

2 , ϕ → ϕ + π
n )

involves the lattice’s smallest non-primitive translation and rotation. The subtraction of the
point group Cnv in equation (5) reflects the set relation Dnh|z=0 ∩ Dnd|z=Tz/4 = Cnv, which is
valid for all n. The glide plane g is also presented in figure 2. It fulfils the multiplicative
relation g = S2nσv. The existence of n distinct glide planes in G[n] stems from the last term
in equation (5).

The point group of the rod group, G0[n], is obtained by setting all translations (including
the non-primitive ones) in G[n] equal to zero. From equation (5), we obtain

G0[n] = Dnh × [E ⊕ C2n] = Dnd × [E ⊕ C2n] = D2nh, (6)

where C2n = (ϕ → ϕ + π
n ) is the rotation embedded in S2n .
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Aiming at characterizing the symmetries of phonons at the �(k = 0)-point, we would like
to discuss the irreducible representations (irreps) of G[n] at �. As known from the theory
of space groups [20], these irreps are in a one-to-one correspondence with the irreps of
G0[n] = D2nh. Recall that the character table of D2nh possesses 2n + 6 irreps [21]:

�D2nh = A1g ⊕ A2g ⊕ B1g ⊕ B2g ⊕ A1u ⊕ A2u ⊕ B1u ⊕ B2u ⊕ ◦
n−1∑
j=1

{E jg ⊕ E ju}. (7)

Next, we would like to determine the symmetries of the 6N phonon modes at the �-point
and how many modes are Raman or IR active. Recall that, for achiral CNTs, N = 2n. At
this point we have to differentiate between (n, 0) zigzag and (n, n) armchair CNTs, due to
the differences in the arrangements of atoms inside their unit cells. The 6N phonon modes
transform according to the following irreps for zigzag CNTs:

�
zig,n∈evens
6N = �zig,n∈evens

a ⊗ �v = 2A1g ⊕ A2g ⊕ 2B1g ⊕ B2g ⊕ A1u

⊕ 2A2u ⊕ B1u ⊕ 2B2u ⊕ ◦
n−1∑
j=1

{3E jg ⊕ 3E ju},

�
zig,n∈odds
6N = �zig,n∈odds

a ⊗ �v = 2A1g ⊕ A2g ⊕ B1g ⊕ 2B2g ⊕ A1u

⊕ 2A2u ⊕ 2B1u ⊕ B2u ⊕ ◦
n−1∑
j=1

{3E jg ⊕ 3E ju}, (8)

where

�zig,n∈evens
a = A1g ⊕ B1g ⊕ A2u ⊕ B2u ⊕ ◦

n−1∑
j=1

{E jg ⊕ E ju},

�zig,n∈odds
a = A1g ⊕ B2g ⊕ A2u ⊕ B1u ⊕ ◦

n−1∑
j=1

{E jg ⊕ E ju}, (9)

stand for the reducible representations of the carbon atoms’ positions inside the unit cells and
�v = A2u ⊕ E1u is the vector representation. Similarly, the 6N phonon modes for armchair
CNTs transform according to the following irreps:

�
arm,n∈evens
6N = �arm,n∈evens

a ⊗ �v = 2A1g ⊕ 2A2g ⊕ 2B1g ⊕ 2B2g ⊕ A1u ⊕ A2u ⊕ B1u ⊕ B2u

⊕ 2E1g ⊕ 4E2g ⊕ 2E3g ⊕ 4E4g ⊕ · · · ⊕ (3 + (−1)n−1)E(n−1)g

⊕ 4E1u ⊕ 2E2u ⊕ 4E3u ⊕ 2E4u ⊕ · · · ⊕ (3 − (−1)n−1)E(n−1)u,

�
arm,n∈odds
6N = �arm,n∈odds

a ⊗ �v = 2A1g ⊕ 2A2g ⊕ B1g ⊕ B2g ⊕ A1u ⊕ A2u ⊕ 2B1u ⊕ 2B2u

⊕ 2E1g ⊕ 4E2g ⊕ 2E3g ⊕ 4E4g ⊕ · · · ⊕ (3 + (−1)n−1)E(n−1)g

⊕ 4E1u ⊕ 2E2u ⊕ 4E3u ⊕ 2E4u ⊕ · · · ⊕ (3 − (−1)n−1)E(n−1)u, (10)

where

�arm,n∈evens
a = A1g ⊕ A2g ⊕ B1g ⊕ B2g ⊕ 2 ◦

n−1∑
j=2l

E jg ⊕ 2 ◦
n−1∑

j=2l−1

E ju,

�arm,n∈odds
a = A1g ⊕ A2g ⊕ B1u ⊕ B2u ⊕ 2 ◦

n−1∑
j=2l

E jg ⊕ 2 ◦
n−1∑

j=2l−1

E ju, (11)

stand for the reducible representations of the carbon atoms’ positions inside the unit cells.
Of these modes, those that transform according to �t = A1g ⊕ E1g ⊕ E2g (the tensor
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representation) or �v are Raman or IR active, respectively. Out of the 6N phonon modes, four
(which transform as �v and �Rz = A2g) have vanishing frequencies [4, 22]. Consequently, the
symmetries and numbers of optically active phonon modes in zigzag CNTs (with either odd
or even index n) are given by [18]:

�
zig
Raman = 2A1g ⊕ 3E1g ⊕ 3E2g 
⇒ nzig

Raman = 8, (12)

�
zig
IR = A2u ⊕ 2E1u 
⇒ nzig

IR = 3, (13)

and, in armchair CNTs (with either odd or even index n) [18], by:

�arm
Raman = 2A1g ⊕ 2E1g ⊕ 4E2g 
⇒ narm

Raman = 8, (14)

�arm
IR = 3E1u 
⇒ narm

IR = 3. (15)

Thus, the numbers of Raman- and IR-active phonon modes were found to be fixed for all
zigzag and armchair CNTs [18], as had previously been predicted by Dresselhaus and co-
workers using the subgroup point groups Dnh,Dnd ⊆ D2nh (see [4] and references therein).
Due to the higher rod group and factor group symmetries [16, 17] there are much fewer active
modes: eight (Raman) and three (IR) [18], instead of 15–16 and 7–8 [4], respectively.

2.2. Chiral carbon nanotubes

To discuss the numbers of Raman- and IR-active vibrations in chiral CNTs, we start with their
spatial symmetry. The non-symmorphic rod group that describes the (n, m) chiral CNT [16, 17]
can be decomposed as follows (the 5th family of rod groups [19]):

G[N] = LTz × Dd ×
[

◦
N
d −1∑
j=0

S
j
N/d

]
= LTz × D1 ×

[
◦

N−1∑
j=0

S
j
N

]
, (16)

where d is the greatest common divisor of n and m, and SN/d and SN are screw-axis operations
with the orders of N/d and N , respectively. The point group of the rod group is readily obtained
from equation (16):

G0[N] = ◦
N
d −1∑
j=0

C j
N/d × Dd = ◦

N−1∑
j=0

C j
N × D1 = DN , (17)

where CN/d = (ϕ → ϕ + 2dπ
N ) and CN = (ϕ → ϕ + 2π

N ) are the rotations embedded in

S
j
N/d and SN , respectively. As mentioned above, this higher symmetry (DN ⊇ CN ) led to the

reduction of the numbers of optically active phonon modes in chiral CNTs [18].
Analogously to the treatment given above for achiral CNTs, we would like to discuss the

irreps of G0[N] DN for chiral CNTs. Recall that the character table of DN possesses N
2 + 3

irreps (N is always even for CNTs) [21]:

�DN = A1 ⊕ A2 ⊕ B1 ⊕ B2 ⊕ ◦
N
2 −1∑
j=1

E j . (18)

The 6N phonon modes transform according to the following irreps:

�ch
6N = �ch

a ⊗ �v = 3A1 ⊕ 3A2 ⊕ 3B1 ⊕ 3B2 ⊕ ◦
N
2 −1∑
j=1

6E j , (19)

where

�ch
a = A1 ⊕ A2 ⊕ B1 ⊕ B2 ⊕ ◦

N
2 −1∑
j=1

2E j , (20)
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stands for the reducible representation of the carbon atoms’ positions inside the unit cell, and
�v = A2 ⊕ E1 is the vector representation. Of these modes, those that transform according
to �t = A1 ⊕ E1 ⊕ E2 and/or �v are Raman and/or IR active, respectively. Four of the 6N
phonon modes (those which transform as �v and �Rz = A2) have vanishing frequencies [4, 22].
Consequently, the symmetries and numbers of optically active phonon modes are given by [18]:

�ch
Raman = 3A1 ⊕ 5E1 ⊕ 6E2 
⇒ nch

Raman = 14, (21)

�ch
IR = A2 ⊕ 5E1 
⇒ nch

IR = 6. (22)

Thus, the numbers of Raman- and IR-active phonon modes have been found to be independent
of the chiral CNT indices (n, m), as had previously been predicted by Dresselhaus and co-
workers (see [4] and references therein) using the subgroup factor-group CN ⊆ DN . However,
due to the higher rod-group and factor-group symmetries, fewer modes were found to be active:
14 (Raman) and six (IR) [18] instead of 15 and nine [4], respectively.

3. Active phonons in single-walled boron nitride nanotubes

The classification of BNT spatial symmetries has been carried out only recently [23, 24].
The profound implications of the symmetry properties of BNTs on physical effects can be
seen in, for example, the work of Král et al [25], who predicted non-centrosymmetry- and
polarity-based photogalvanic effects in BNTs. More specifically, the direction of the induced
photocurrent was shown to depend on the BNT chirality. However, all armchair BNTs are
centrosymmetric. Nevertheless, and in contrast to 2D and 3D centrosymmetric and polar
crystalline materials, they (should) exhibit the azimuthal photocurrents predicted in [25].
Below we review the determination of the numbers of Raman- and IR-active vibrations in
BNTs as well as their correlation with those of the corresponding CNTs [24]. Very recently,
measurements of IR and Raman spectra of BNTs have been performed for the first time [26],
generally corroborating the theoretical predictions. Simultaneously, the frequencies of the
active vibrations in BNTs have been calculated [26–29].

3.1. Armchair and zigzag boron nitride nanotubes

Consider the achiral BNTs possessing a rotation axis of order n, i.e. the (n, n) armchair
(figure 3) and (n, 0) zigzag (figure 4) BNTs. Unlike the situation for CNTs, these do not
possess the same symmetry operations [23, 24], owing to the lower symmetry described in
equation (4). Nevertheless, they still possess symmetries of non-symmorphic rod groups
because the screw axis S2n ‘survives’ this symmetry lowering (see figures 3 and 4). More
specifically, the (n, n) armchair BNT possesses horizontal reflection planes (see figure 3).
The lack of C2 axes (recall that there are no C2 axes in p3m1) leads to the absence of vertical
reflection planes in this case. Consequently, the Dnh and Dnd point groups in armchair CNTs
(see figure 2 (top) and equation (5)) reduce to Cnh and S2n , respectively (see figure 3). The
converse is true for the (n, 0) zigzag BNT, which has vertical reflection planes (see figure 4)
but no horizontal reflection planes. Consequently, both the Dnh and Dnd point groups in zigzag
CNTs (see figure 2 (bottom) and equation (5)) reduce to Cnv (see figure 4). Therefore, the non-
symmorphic rod group that describes the (n, n) armchair BNT with (either odd or even) index
n [23, 24] can be decomposed in the following manner (the 4th family of rod groups [19]):

Garm[n] = LTz × Cnh × [E ⊕ S2n] = LTz × S2n × [E ⊕ S2n]

= LTz × [Cnh|z=0 ⊕ (S2n|z=Tz/4 � Cn) ⊕ Cn × S2n]. (23)

The reference point z = 0 denotes the crossing of horizontal reflection plane, σh, and the n-fold
rotation axis, Cn (see figure 3). The subtraction of the point group Cn in equation (23) reflects
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Figure 3. 2D projection of various symmetries in armchair BNTs (•, B; ◦, N): Tz is the primitive
translation; S2n is the screw axis with non-primitive translation and rotation, denoted by Tz/2 and
Cn/2, respectively; Cnh|z=0 and S2n |z=Tz/4 stand for the corresponding point-group operations,
among which σh and Cn are denoted. Note the Tz/4 shift between Cnh|z=0 and S2n |z=Tz /4, which
coexist in all armchair BNTs.

Figure 4. 2D projection of various symmetries of zigzag BNTs (•, B; ◦, N): Tz is the primitive
translation; S2n is the screw axis with non-primitive translation and rotation, denoted by Tz/2 and
Cn/2, respectively; g is a glide plane; Cnv stands for the corresponding point-group operations,
among which σv and Cn are denoted.

the set relation Cnh|z=0 ∩S2n |z=Tz/4 = Cn, which is valid for all n. Note that, while p3m1 does
not possess the inversion symmetry, Garm[n] do possess this symmetry both for even and odd n!
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In addition, let us point out that the buckling of B–N bonds [8, 10] has no effect on the spatial
symmetries of BNTs because the B and N atoms form two concentric cylinders [10] in the
BNTs. The point group of the rod group is readily obtained from equation (23):

Garm
0 [n] = Cnh × [E ⊕ C2n] = S2n × [E ⊕ C2n] = C2nh. (24)

Similarly, the non-symmorphic rod group that describes the (n, 0) zigzag BNT with (either
odd or even) index n [23, 24] can be decomposed in the following manner (the 8th family of
rod groups [19]):

Gzig[n] = LTz × Cnv × [E ⊕ S2n]. (25)

Note that the glide planes in zigzag CNTs (see figure 2 (bottom) and equation (5)) are preserved
in zigzag BNTs (see figure 4 and equation (25)). The point group of the rod group is readily
obtained from equation (25):

Gzig
0 [n] = Cnv × [E ⊕ C2n] = C2nv. (26)

To determine the symmetries (at the �-point) of the 6N phonon modes in armchair BNTs
and how many modes are Raman or IR active, we have to associate them with the irreps of
Garm

0 [n] = C2nh. Recall that the character table of C2nh possesses 4n irreps [21]:

�C2nh = Ag ⊕ Bg ⊕ Au ⊕ Bu ⊕ ◦
n−1∑
j=1

{E±
jg ⊕ E±

ju}. (27)

The 6N phonon modes transform according to the following irreps:

�arm
6N = �arm

a ⊗ �v = 4Ag ⊕ 2Bg ⊕ 2Au ⊕ 4Bu

⊕2E±
1g ⊕ 4E±

2g ⊕ 2E±
3g ⊕ · · · ⊕ (3 + (−1)n−1)E±

(n−1)g

⊕4E±
1u ⊕ 2E±

2u ⊕ 4E±
3u ⊕ · · · ⊕ (3 − (−1)n−1)E±

(n−1)u, (28)

where

�arm
a = 2

(
Ag ⊕ Bu ⊕ ◦

n−1∑
j=2l

E±
jg ⊕ ◦

n−1∑
j=2l−1

E±
ju

)
, (29)

stands for the reducible representations of the positions of B and N atoms inside the unit cell.
The prefactor of 2 in �arm

a (29) reflects the two equivalent and disjoint sub-lattices formed by
the B and N atoms in the BNTs. �v = Au ⊕ E±

1u is the vector representation. Of these modes,
the ones that transform according to �t = Ag ⊕ E±

1g ⊕ E±
2g (the tensor representation) or �v are

Raman or IR active, respectively. Out of the 6N phonon modes, four (which transform as �v

and �Rz = Ag) have vanishing frequencies [22]. Consequently, the symmetries and numbers
of optically active phonon modes in armchair BNTs are given by [24]:

�arm
Raman = 3Ag ⊕ 2E±

1g ⊕ 4E±
2g 
⇒ narm

Raman = 9, (30)

�arm
IR = Au ⊕ 3E±

1u 
⇒ narm
IR = 4. (31)

Note that the numbers of Raman- and IR-active phonon modes found for armchair BNTs are
almost the same as for armchair CNTs (eight Raman and three IR active modes; see section 2).

Analogously to the treatment given above for armchair BNTs, we would like to discuss
the irreps of Gzig

0 [n] = C2nv. Recall that the character table of C2nv possesses n + 3 irreps [21]:

�C2nv = A1 ⊕ A2 ⊕ B1 ⊕ B2 ⊕ ◦
n−1∑
j=1

E j . (32)
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The 6N phonon modes transform according to the following irreps:

�
zig
6N = �zig

a ⊗ �v = 4A1 ⊕ 2A2 ⊕ 4B1 ⊕ 2B2 ⊕ ◦
n−1∑
j=1

6E j , (33)

where

�zig
a = 2

(
A1 ⊕ B1 ⊕ ◦

n−1∑
j=1

E j

)
(34)

and �v = A1 ⊕ E1. Of these modes, the ones that transform according to �t = A1 ⊕ E1 ⊕ E2

and/or �v are Raman and/or IR active, respectively. Four of the 6N phonon modes—those
which transform as �v and �Rz = A2—have vanishing frequencies [22]. Consequently, the
symmetries and numbers of optically active phonon modes in zigzag BNTs are given by [24]:

�
zig
Raman = 3A1 ⊕ 5E1 ⊕ 6E2 
⇒ nzig

Raman = 14, (35)

�
zig
IR = 3A1 ⊕ 5E1 
⇒ nzig

IR = 8. (36)

Note that the numbers of Raman- and IR-active phonon modes found for zigzag BNTs are
almost twice those for zigzag CNTs (eight Raman- and three IR-active modes; see section 2)
or armchair BNTs (see equations (30) and (31)). In addition, as a result of the lowered symmetry
with respect to—and in contrast to—the situation for zigzag CNTs, all eight IR-active modes
are Raman-active as well.

3.2. Chiral boron nitride nanotubes

Finally, let us discuss the (n, m) chiral BNT. Following the lack of C2 axes in p3m1, the Dd

point group in the (n, m) chiral CNT (see equation (16)) reduces to Cd in the (n, m) chiral BNT.
Nevertheless, the (n, m) chiral BNT still possesses the non-symmorphic rod-group symmetries,
because the screw axis SN ‘survives’ the above symmetry lowering. Consequently, the non-
symmorphic rod group that describes the (n, m) chiral BNT [23, 24] can be decomposed as
follows (the first family of rod groups [19]):

Gch[N] = LTz × Cd ×
[

◦
N
d −1∑
j=0

S
j
N/d

]
= LTz ×

[
◦

N−1∑
j=0

S
j
N

]
. (37)

From equation (37) we can easily find the point group of the rod group:

Gch
0 [N] = Cd ×

[
◦

N
d −1∑
j=0

C j
N/d

]
= ◦

N−1∑
j=0

C j
N = CN . (38)

To determine the symmetries (at the �-point) of the 6N phonon modes in chiral BNTs and
how many modes are Raman and/or IR active, we have to associate them with the irreps of
Gch

0 [N] = CN . Recall that the character table of CN possesses N irreps [21]:

�CN = A ⊕ B ⊕ ◦
N
2 −1∑
j=1

E±
j . (39)

The 6N phonon modes transform according to the following irreps:

�ch
6N = �ch

a ⊗ �v = 6A ⊕ 6B ⊕ ◦
N
2 −1∑
j=1

6E±
j , (40)
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where

�ch
a = 2

(
A ⊕ B ⊕ ◦

N
2 −1∑
j=1

E±
j

)
= 2�CN (41)

and �v = A ⊕ E±
1 . Of these modes, the ones that transform according to �t = A ⊕ E±

1 ⊕ E±
2

and/or �v are Raman and/or IR active, respectively. Four of the 6N phonon modes—those
which transform as �v and �Rz = A—have vanishing frequencies [22]. Consequently, the
symmetries and numbers of optically active phonon modes are given by [24]:

�ch
Raman = 4A ⊕ 5E±

1 ⊕ 6E±
2 
⇒ nzig

Raman = 15, (42)

�ch
IR = 4A ⊕ 5E±

1 
⇒ nzig
IR = 9. (43)

Note that the numbers of Raman- and IR-active phonon modes found for chiral BNTs are
almost the same as for chiral CNTs (14 Raman- and six IR-active modes; see section 2).

4. Concluding remarks

The connection between spatial symmetry and the numbers of Raman- and IR-active vibrations
in single-walled nanotubes, in particular for CNTs and BNTs, has been a stimulating problem
over the past several years. The accounts given here show that classical molecular spectroscopy
principles have certainly had contemporary success in—and relevance to—the subject. In
particular, by utilizing the latterly identified higher-symmetric factor group D2nh for the
symmetry analysis of phonon modes in achiral CNTs, it has been shown that the numbers of
Raman- and IR-active vibrations is about half of what was previously predicted, in conjunction
with experimental results (see, for example, [14, 15]). The most recent experiments on the IR
and Raman spectroscopy of BNTs [26] also reflect the basic theoretical tools reviewed in this
work.
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